
SRI AKILANDESWARI WOMEN’S COLLEGE,

WANDIWASH

SOFTWARE ENGINEERING
Class: III. B. Sc Computer Science

Prepared by

C. BALASUBRAMANIAN,

Assistant Professor, Dept of Computer Science

SWAMY ABEDHANADHA EDUCATIONAL TRUST, WANDIWASH

Requirements Engineering

30/10/2014 Chapter 4 Requirements Engineering 2

Topics covered

• Functional and non-functional requirements

• Requirements engineering processes

• Requirements elicitation

• Requirements specification

• Requirements validation

• Requirements change

30/10/2014 Chapter 4 Requirements Engineering 3

Requirements engineering

• The process of establishing the services that
acustomer requires from a system and the
constraints under which it operates and is
developed.

• The system requirements are the descriptions
of the system services and constraints that are
generated during the requirements
engineering process.

30/10/2014 Chapter 4 Requirements Engineering 4

What is a requirement?

 It may range from a high-level abstract statement
of a service or of a system constraint to a
detailed mathematical functional specification.

 This is inevitable as requirements may serve a
dual function
 May be the basis for a bid for a contract - therefore

must be open to interpretation;

 May be the basis for the contract itself - therefore
must be defined in detail;

 Both these statements may be called requirements.

30/10/2014 Chapter 4 Requirements Engineering 5

Requirements abstraction (Davis)

30/10/2014 Chapter 4 Requirements Engineering 6

“If a company wishes to let a contract for a large software development

project, it must define its needs in a sufficiently abstract way that a

solution is not pre-defined. The requirements must be written so that

several contractors can bid for the contract, offering, perhaps, different

ways of meeting the client organization’s needs. Once a contract has

been awarded, the contractor must write a system definition for the

client in more detail so that the client understands and can validate what

the software will do. Both of these documents may be called the

requirements document for the system.”

Types of requirement

• User requirements
– Statements in natural language plus diagrams of

the services the system provides and its
operational constraints. Written for customers.

• System requirements
– A structured document setting out detailed

descriptions of the system’s functions, services
and operational constraints. Defines what should
be implemented so may be part of a contract
between client and contractor.

30/10/2014 Chapter 4 Requirements Engineering 7

User and system requirements

30/10/2014 Chapter 4 Requirements Engineering 8

Readers of different types of
requirements specification

30/10/2014 Chapter 4 Requirements Engineering 9

System stakeholders

• Any person or organization who is affected by
the system in some way and so who has a
legitimate interest

• Stakeholder types

– End users

– System managers

– System owners

– External stakeholders

30/10/2014 Chapter 4 Requirements Engineering 10

Stakeholders in the Mentcare system

 Patients whose information is recorded in the system.

 Doctors who are responsible for assessing and treating
patients.

 Nurses who coordinate the consultations with doctors
and administer some treatments.

 Medical receptionists who manage patients’
appointments.

 IT staff who are responsible for installing and
maintaining the system.

30/10/2014 Chapter 4 Requirements Engineering 11

Stakeholders in the Mentcare system

 A medical ethics manager who must ensure that
the system meets current ethical guidelines for
patient care.

 Health care managers who obtain management
information from the system.

 Medical records staff who are responsible for
ensuring that system information can be
maintained and preserved, and that record
keeping procedures have been properly
implemented.

30/10/2014 Chapter 4 Requirements Engineering 12

Agile methods and requirements

 Many agile methods argue that producing detailed
system requirements is a waste of time as
requirements change so quickly.

 The requirements document is therefore always out of
date.

 Agile methods usually use incremental requirements
engineering and may express requirements as ‘user
stories’ (discussed in Chapter 3).

 This is practical for business systems but problematic
for systems that require pre-delivery analysis (e.g.
critical systems) or systems developed by several
teams.

30/10/2014 Chapter 4 Requirements Engineering 13

Functional and non-functional
requirements

30/10/2014 Chapter 4 Requirements Engineering 14

Functional and non-functional
requirements

 Functional requirements
 Statements of services the system should provide, how the system

should react to particular inputs and how the system should behave in
particular situations.

 May state what the system should not do.
 Non-functional requirements

 Constraints on the services or functions offered by the system such as
timing constraints, constraints on the development process, standards,
etc.

 Often apply to the system as a whole rather than
individual features or services.

 Domain requirements

 Constraints on the system from the domain of operation

30/10/2014 Chapter 4 Requirements Engineering 15

Functional requirements

• Describe functionality or system services.

• Depend on the type of software, expected
users and the type of system where the
software is used.

• Functional user requirements may be high-
level statements of what the system should
do.

• Functional system requirements should
describe the system services in detail.

30/10/2014 Chapter 4 Requirements Engineering 16

Mentcare system: functional
requirements

• A user shall be able to search the
appointments lists for all clinics.

• The system shall generate each day, for each
clinic, a list of patients who are expected to
attend appointments that day.

• Each staff member using the system shall be
uniquely identified by his or her 8-digit
employee number.

30/10/2014 Chapter 4 Requirements Engineering 17

Requirements imprecision

 Problems arise when functional requirements
are not precisely stated.

 Ambiguous requirements may be interpreted in
different ways by developers and users.

 Consider the term ‘search’ in requirement 1

 User intention – search for a patient name across all
appointments in all clinics;

 Developer interpretation – search for a patient name
in an individual clinic. User chooses clinic then search.

30/10/2014 Chapter 4 Requirements Engineering 18

Requirements completeness and
consistency

 In principle, requirements should be both complete and
consistent.

 Complete

 They should include descriptions of all facilities
required.

 Consistent

 There should be no conflicts or contradictions in
the descriptions of the system facilities.

 In practice, because of system and environmental complexity,
it is impossible to produce a complete and consistent
requirements document.

30/10/2014 Chapter 4 Requirements Engineering 19

Non-functional requirements

 These define system properties and
constraints e.g. reliability, response time and
storage requirements. Constraints are I/O
device capability, system representations, etc.

 Process requirements may also be specified
mandating a particular IDE, programming
language or development method.

 Non-functional requirements may be more
critical than functional requirements. If these
are not met, the system may be useless.

30/10/2014 Chapter 4 Requirements Engineering 20

Types of nonfunctional requirement

30/10/2014 Chapter 4 Requirements Engineering 21

Non-functional requirements
implementation

 Non-functional requirements may affect the overall
architecture of a system rather than the individual
components.
 For example, to ensure that performance requirements are

met, you may have to organize the system to minimize
communications between components.

 A single non-functional requirement, such as a security
requirement, may generate a number of related
functional requirements that define system services
that are required.
 It may also generate requirements that restrict existing

requirements.

30/10/2014 Chapter 4 Requirements Engineering 22

Non-functional classifications

• Product requirements
– Requirements which specify that the delivered product must behave in

a particular way e.g. execution speed, reliability, etc.

• Organisational requirements
– Requirements which are a consequence of organisational policies and

procedures e.g. process standards used, implementation
requirements, etc.

• External requirements
– Requirements which arise from factors which are external to the

system and its development process e.g. interoperability
requirements, legislative requirements, etc.

30/10/2014 Chapter 4 Requirements Engineering 23

Examples of nonfunctional
requirements in the Mentcare system

30/10/2014 Chapter 4 Requirements Engineering 24

Product requirement
The Mentcare system shall be available to all clinics during normal
working hours (Mon–Fri, 0830–17.30). Downtime within normal
working hours shall not exceed five seconds in any one day.

Organizational requirement
Users of the Mentcare system shall authenticate themselves using
their health authority identity card.

External requirement
The system shall implement patient privacy provisions as set out in
HStan-03-2006-priv.

Goals and requirements

• Non-functional requirements may be very difficult to state
precisely and imprecise requirements may be difficult to
verify.

• Goal
– A general intention of the user such as ease of use.

• Verifiable non-functional requirement
– A statement using some measure that can be objectively tested.

• Goals are helpful to developers as they convey the intentions
of the system users.

30/10/2014 Chapter 4 Requirements Engineering 25

Usability requirements

• The system should be easy to use by medical
staff and should be organized in such a way
that user errors are minimized. (Goal)

• Medical staff shall be able to use all the
system functions after four hours of training.
After this training, the average number of
errors made by experienced users shall not
exceed two per hour of system use. (Testable
non-functional requirement)

30/10/2014 Chapter 4 Requirements Engineering 26

Metrics for specifying nonfunctional
requirements

30/10/2014 Chapter 4 Requirements Engineering 27

Property Measure

Speed Processed transactions/second

User/event response time

Screen refresh time

Size Mbytes

Number of ROM chips

Ease of use Training time

Number of help frames

Reliability Mean time to failure

Probability of unavailability

Rate of failure occurrence

Availability

Robustness Time to restart after failure

Percentage of events causing failure

Probability of data corruption on failure

Portability Percentage of target dependent statements

Number of target systems

Requirements engineering processes

30/10/2014 Chapter 4 Requirements Engineering 28

Requirements engineering processes

 The processes used for RE vary widely depending
on the application domain, the people involved
and the organisation developing the
requirements.

 However, there are a number of generic activities
common to all processes
 Requirements elicitation;
 Requirements analysis;
 Requirements validation;
 Requirements management.

 In practice, RE is an iterative activity in which
these processes are interleaved.

30/10/2014 Chapter 4 Requirements Engineering 29

A spiral view of the requirements
engineering process

30/10/2014 Chapter 4 Requirements Engineering 30

Requirements elicitation

30/10/2014 Chapter 4 Requirements Engineering 31

Requirements elicitation and analysis

• Sometimes called requirements elicitation or requirements
discovery.

• Involves technical staff working with customers to find out
about the application domain, the services that the system
should provide and the system’s operational constraints.

• May involve end-users, managers, engineers involved in
maintenance, domain experts, trade unions, etc. These are
called stakeholders.

30/10/2014 Chapter 4 Requirements Engineering 32

Requirements elicitation

30/10/2014 Chapter 4 Requirements Engineering 33

Requirements elicitation

• Software engineers work with a range of system
stakeholders to find out about the application
domain, the services that the system should
provide, the required system performance,
hardware constraints, other systems, etc.

• Stages include:
– Requirements discovery,

– Requirements classification and organization,

– Requirements prioritization and negotiation,

– Requirements specification.

30/10/2014 Chapter 4 Requirements Engineering 34

Problems of requirements elicitation

• Stakeholders don’t know what they really want.

• Stakeholders express requirements in their own terms.

• Different stakeholders may have conflicting requirements.

• Organisational and political factors may influence the system
requirements.

• The requirements change during the analysis process. New
stakeholders may emerge and the business environment may
change.

30/10/2014 Chapter 4 Requirements Engineering 35

The requirements elicitation and
analysis process

30/10/2014 Chapter 4 Requirements Engineering 36

Process activities

• Requirements discovery
– Interacting with stakeholders to discover their requirements. Domain

requirements are also discovered at this stage.

• Requirements classification and organisation
– Groups related requirements and organises them into coherent

clusters.

• Prioritisation and negotiation
– Prioritising requirements and resolving requirements conflicts.

• Requirements specification
– Requirements are documented and input into the next round of the

spiral.

30/10/2014 Chapter 4 Requirements Engineering 37

Requirements discovery

• The process of gathering information about
the required and existing systems and
distilling the user and system requirements
from this information.

• Interaction is with system stakeholders from
managers to external regulators.

• Systems normally have a range of
stakeholders.

30/10/2014 Chapter 4 Requirements Engineering 38

Interviewing

• Formal or informal interviews with stakeholders are
part of most RE processes.

• Types of interview
– Closed interviews based on pre-determined list of

questions
– Open interviews where various issues are explored with

stakeholders.

• Effective interviewing
– Be open-minded, avoid pre-conceived ideas about the

requirements and are willing to listen to stakeholders.
– Prompt the interviewee to get discussions going using a

springboard question, a requirements proposal, or by
working together on a prototype system.

30/10/2014 Chapter 4 Requirements Engineering 39

Interviews in practice

• Normally a mix of closed and open-ended interviewing.

• Interviews are good for getting an overall understanding of
what stakeholders do and how they might interact with the
system.

• Interviewers need to be open-minded without
pre-conceived ideas of what the system
should do

• You need to prompt the use to talk about the system by
suggesting requirements rather than simply asking them what
they want.

30/10/2014 Chapter 4 Requirements Engineering 40

Problems with interviews

• Application specialists may use language to
describe their work that isn’t easy for the
requirements engineer to understand.

• Interviews are not good for understanding
domain requirements
– Requirements engineers cannot understand

specific domain terminology;

– Some domain knowledge is so familiar that people
find it hard to articulate or think that it isn’t worth
articulating.

30/10/2014 Chapter 4 Requirements Engineering 41

Ethnography

• A social scientist spends a considerable time observing and
analysing how people actually work.

• People do not have to explain or articulate their work.

• Social and organisational factors of importance may be
observed.

• Ethnographic studies have shown that work is usually richer
and more complex than suggested by simple system models.

30/10/2014 Chapter 4 Requirements Engineering 42

Scope of ethnography

• Requirements that are derived from the way that
people actually work rather than the way I which
process definitions suggest that they ought to
work.

• Requirements that are derived from cooperation
and awareness of other people’s activities.
– Awareness of what other people are doing leads to

changes in the ways in which we do things.

• Ethnography is effective for understanding
existing processes but cannot identify new
features that should be added to a system.

30/10/2014 Chapter 4 Requirements Engineering 43

Focused ethnography

• Developed in a project studying the air traffic
control process

• Combines ethnography with prototyping
• Prototype development results in unanswered

questions which focus the ethnographic
analysis.

• The problem with ethnography is that it
studies existing practices which may have
some historical basis which is no longer
relevant.

30/10/2014 Chapter 4 Requirements Engineering 44

Ethnography and prototyping for
requirements analysis

30/10/2014 Chapter 4 Requirements Engineering 45

Stories and scenarios

• Scenarios and user stories are real-life
examples of how a system can be used.

• Stories and scenarios are a description of how
a system may be used for a particular task.

• Because they are based on a practical
situation, stakeholders can relate to them and
can comment on their situation with respect
to the story.

30/10/2014 Chapter 4 Requirements Engineering 46

Photo sharing in the classroom (iLearn)

• Jack is a primary school teacher in Ullapool (a village in northern Scotland). He has decided
that a class project should be focused around the fishing industry in the area, looking at the
history, development and economic impact of fishing. As part of this, pupils are asked to
gather and share reminiscences from relatives, use newspaper archives and collect old
photographs related to fishing and fishing communities in the area. Pupils use an iLearn wiki
to gather together fishing stories and SCRAN (a history resources site) to access newspaper
archives and photographs. However, Jack also needs a photo sharing site as he wants pupils
to take and comment on each others’ photos and to upload scans of old photographs that
they may have in their families.

Jack sends an email to a primary school teachers group, which he is a member of to see if
anyone can recommend an appropriate system. Two teachers reply and both suggest that he
uses KidsTakePics, a photo sharing site that allows teachers to check and moderate content.
As KidsTakePics is not integrated with the iLearn authentication service, he sets up a teacher
and a class account. He uses the iLearn setup service to add KidsTakePics to the services seen
by the pupils in his class so that when they log in, they can immediately use the system to
upload photos from their mobile devices and class computers.

30/10/2014 Chapter 4 Requirements Engineering 47

Scenarios

• A structured form of user story

• Scenarios should include

– A description of the starting situation;

– A description of the normal flow of events;

– A description of what can go wrong;

– Information about other concurrent activities;

– A description of the state when the scenario
finishes.

30/10/2014 Chapter 4 Requirements Engineering 48

Uploading photos iLearn)

• Initial assumption: A user or a group of users have one or more digital photographs to be
uploaded to the picture sharing site. These are saved on either a tablet or laptop computer.
They have successfully logged on to KidsTakePics.

• Normal: The user chooses upload photos and they are prompted to select the photos to be
uploaded on their computer and to select the project name under which the photos will be
stored. They should also be given the option of inputting keywords that should be associated
with each uploaded photo. Uploaded photos are named by creating a conjunction of the user
name with the filename of the photo on the local computer.

• On completion of the upload, the system automatically sends an email to the project
moderator asking them to check new content and generates an on-screen message to the
user that this has been done.

30/10/2014 Chapter 4 Requirements Engineering 49

Uploading photos

• What can go wrong:

• No moderator is associated with the selected project. An email is automatically generated to
the school administrator asking them to nominate a project moderator. Users should be
informed that there could be a delay in making their photos visible.

• Photos with the same name have already been uploaded by the same user. The user should
be asked if they wish to re-upload the photos with the same name, rename the photos or
cancel the upload. If they chose to re-upload the photos, the originals are overwritten. If they
chose to rename the photos, a new name is automatically generated by adding a number to
the existing file name.

• Other activities: The moderator may be logged on to the system and may approve photos as
they are uploaded.

• System state on completion: User is logged on. The selected photos have been uploaded and
assigned a status ‘awaiting moderation’. Photos are visible to the moderator and to the user
who uploaded them.

30/10/2014 Chapter 4 Requirements Engineering 50

Requirements specification

30/10/2014 Chapter 4 Requirements Engineering 51

Requirements specification

• The process of writing donw the user and system
requirements in a requirements document.

• User requirements have to be understandable by end-
users and customers who do not have a technical
background.

• System requirements are more detailed requirements
and may include more technical information.

• The requirements may be part of a contract for the
system development
– It is therefore important that these are as complete as

possible.

30/10/2014 Chapter 4 Requirements Engineering 52

Ways of writing a system requirements
specification

30/10/2014 Chapter 4 Requirements Engineering 53

Notation Description

Natural language The requirements are written using numbered sentences in natural language.

Each sentence should express one requirement.

Structured natural

language

The requirements are written in natural language on a standard form or

template. Each field provides information about an aspect of the

requirement.

Design description

languages

This approach uses a language like a programming language, but with more

abstract features to specify the requirements by defining an operational

model of the system. This approach is now rarely used although it can be

useful for interface specifications.

Graphical notations Graphical models, supplemented by text annotations, are used to define the

functional requirements for the system; UML use case and sequence

diagrams are commonly used.

Mathematical

specifications

These notations are based on mathematical concepts such as finite-state

machines or sets. Although these unambiguous specifications can reduce

the ambiguity in a requirements document, most customers don’t understand

a formal specification. They cannot check that it represents what they want

and are reluctant to accept it as a system contract

Requirements and design

• In principle, requirements should state what the
system should do and the design should describe
how it does this.

• In practice, requirements and design are
inseparable
– A system architecture may be designed to structure

the requirements;
– The system may inter-operate with other systems that

generate design requirements;
– The use of a specific architecture to satisfy non-

functional requirements may be a domain
requirement.

– This may be the consequence of a regulatory requirement.

30/10/2014 Chapter 4 Requirements Engineering 54

Natural language specification

• Requirements are written as natural language
sentences supplemented by diagrams and
tables.

• Used for writing requirements because it is
expressive, intuitive and universal. This means
that the requirements can be understood by
users and customers.

30/10/2014 Chapter 4 Requirements Engineering 55

Guidelines for writing requirements

• Invent a standard format and use it for all
requirements.

• Use language in a consistent way. Use shall for
mandatory requirements, should for desirable
requirements.

• Use text highlighting to identify key parts of the
requirement.

• Avoid the use of computer jargon.
• Include an explanation (rationale) of why a

requirement is necessary.

30/10/2014 Chapter 4 Requirements Engineering 56

Problems with natural language

• Lack of clarity
– Precision is difficult without making the document

difficult to read.

• Requirements confusion
– Functional and non-functional requirements tend

to be mixed-up.

• Requirements amalgamation
– Several different requirements may be expressed

together.

30/10/2014 Chapter 4 Requirements Engineering 57

Example requirements for the insulin
pump software system

30/10/2014 Chapter 4 Requirements Engineering 58

3.2 The system shall measure the blood sugar and deliver
insulin, if required, every 10 minutes. (Changes in blood sugar
are relatively slow so more frequent measurement is
unnecessary; less frequent measurement could lead to
unnecessarily high sugar levels.)

3.6 The system shall run a self-test routine every minute with
the conditions to be tested and the associated actions defined
in Table 1. (A self-test routine can discover hardware and
software problems and alert the user to the fact the normal
operation may be impossible.)

Structured specifications

• An approach to writing requirements where
the freedom of the requirements writer is
limited and requirements are written in a
standard way.

• This works well for some types of
requirements e.g. requirements for embedded
control system but is sometimes too rigid for
writing business system requirements.

30/10/2014 Chapter 4 Requirements Engineering 59

Form-based specifications

• Definition of the function or entity.

• Description of inputs and where they come from.

• Description of outputs and where they go to.

• Information about the information needed for
the computation and other entities used.

• Description of the action to be taken.

• Pre and post conditions (if appropriate).

• The side effects (if any) of the function.

30/10/2014 Chapter 4 Requirements Engineering 60

A structured specification of a
requirement for an insulin pump

30/10/2014 Chapter 4 Requirements Engineering 61

A structured specification of a
requirement for an insulin pump

30/10/2014 Chapter 4 Requirements Engineering 62

Tabular specification

• Used to supplement natural language.

• Particularly useful when you have to define a
number of possible alternative courses of
action.

• For example, the insulin pump systems bases
its computations on the rate of change of
blood sugar level and the tabular specification
explains how to calculate the insulin
requirement for different scenarios.

30/10/2014 Chapter 4 Requirements Engineering 63

Tabular specification of computation
for an insulin pump

30/10/2014 Chapter 4 Requirements Engineering 64

Condition Action

Sugar level falling (r2 < r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of

increase decreasing

((r2 – r1) < (r1 – r0))

CompDose = 0

Sugar level increasing and rate of

increase stable or increasing

((r2 – r1) ≥ (r1 – r0))

CompDose =

round ((r2 – r1)/4)

If rounded result = 0 then

CompDose =

MinimumDose

Use cases

• Use-cases are a kind of scenario that are included in
the UML.

• Use cases identify the actors in an interaction and
which describe the interaction itself.

• A set of use cases should describe all possible
interactions with the system.

• High-level graphical model supplemented by more
detailed tabular description (see Chapter 5).

• UML sequence diagrams may be used to add detail to
use-cases by showing the sequence of event processing
in the system.

30/10/2014 Chapter 4 Requirements Engineering 65

Use cases for the Mentcare system

30/10/2014 Chapter 4 Requirements Engineering 66

The software requirements document

• The software requirements document is the
official statement of what is required of the
system developers.

• Should include both a definition of user
requirements and a specification of the
system requirements.

• It is NOT a design document. As far as
possible, it should set of WHAT the system
should do rather than HOW it should do it.

30/10/2014 Chapter 4 Requirements Engineering 67

Users of a requirements document

30/10/2014 Chapter 4 Requirements Engineering 68

Requirements document variability

• Information in requirements document depends
on type of system and the approach to
development used.

• Systems developed incrementally will, typically,
have less detail in the requirements document.

• Requirements documents standards have been
designed e.g. IEEE standard. These are mostly
applicable to the requirements for large systems
engineering projects.

30/10/2014 Chapter 4 Requirements Engineering 69

The structure of a requirements
document

30/10/2014 Chapter 4 Requirements Engineering 70

Chapter Description

Preface This should define the expected readership of the document and describe

its version history, including a rationale for the creation of a new version

and a summary of the changes made in each version.

Introduction This should describe the need for the system. It should briefly describe the

system’s functions and explain how it will work with other systems. It

should also describe how the system fits into the overall business or

strategic objectives of the organization commissioning the software.

Glossary This should define the technical terms used in the document. You should

not make assumptions about the experience or expertise of the reader.

User requirements

definition

Here, you describe the services provided for the user. The nonfunctional

system requirements should also be described in this section. This

description may use natural language, diagrams, or other notations that are

understandable to customers. Product and process standards that must be

followed should be specified.

System architecture This chapter should present a high-level overview of the anticipated system

architecture, showing the distribution of functions across system modules.

Architectural components that are reused should be highlighted.

The structure of a requirements
document

Chapter Description

System

requirements

specification

This should describe the functional and nonfunctional requirements in more detail.

If necessary, further detail may also be added to the nonfunctional requirements.

Interfaces to other systems may be defined.

System models This might include graphical system models showing the relationships between

the system components and the system and its environment. Examples of

possible models are object models, data-flow models, or semantic data models.

System evolution This should describe the fundamental assumptions on which the system is based,

and any anticipated changes due to hardware evolution, changing user needs,

and so on. This section is useful for system designers as it may help them avoid

design decisions that would constrain likely future changes to the system.

Appendices These should provide detailed, specific information that is related to the

application being developed; for example, hardware and database descriptions.

Hardware requirements define the minimal and optimal configurations for the

system. Database requirements define the logical organization of the data used

by the system and the relationships between data.

Index Several indexes to the document may be included. As well as a normal alphabetic

index, there may be an index of diagrams, an index of functions, and so on.

30/10/2014 Chapter 4 Requirements Engineering 71

Requirements validation

30/10/2014 Chapter 4 Requirements Engineering 72

Requirements validation

• Concerned with demonstrating that the
requirements define the system that the
customer really wants.

• Requirements error costs are high so
validation is very important

– Fixing a requirements error after delivery may cost
up to 100 times the cost of fixing an
implementation error.

30/10/2014 Chapter 4 Requirements Engineering 73

Requirements checking

• Validity. Does the system provide the functions which best
support the customer’s needs?

• Consistency. Are there any requirements conflicts?

• Completeness. Are all functions required by the customer
included?

• Realism. Can the requirements be implemented given
available budget and technology

• Verifiability. Can the requirements be checked?

30/10/2014 Chapter 4 Requirements Engineering 74

Requirements validation techniques

• Requirements reviews
– Systematic manual analysis of the requirements.

• Prototyping
– Using an executable model of the system to check

requirements. Covered in Chapter 2.

• Test-case generation
– Developing tests for requirements to check

testability.

30/10/2014 Chapter 4 Requirements Engineering 75

Requirements reviews

• Regular reviews should be held while the
requirements definition is being formulated.

• Both client and contractor staff should be
involved in reviews.

• Reviews may be formal (with completed
documents) or informal. Good
communications between developers,
customers and users can resolve problems at
an early stage.

30/10/2014 Chapter 4 Requirements Engineering 76

Review checks

• Verifiability
– Is the requirement realistically testable?

• Comprehensibility
– Is the requirement properly understood?

• Traceability
– Is the origin of the requirement clearly stated?

• Adaptability
– Can the requirement be changed without a large

impact on other requirements?

30/10/2014 Chapter 4 Requirements Engineering 77

Requirements change

30/10/2014 Chapter 4 Requirements Engineering 78

Changing requirements

• The business and technical environment of the system
always changes after installation.
– New hardware may be introduced, it may be necessary to

interface the system with other systems, business priorities may
change (with consequent changes in the system support
required), and new legislation and regulations may be
introduced that the system must necessarily abide by.

• The people who pay for a system and the users of that
system are rarely the same people.
– System customers impose requirements because of

organizational and budgetary constraints. These may conflict
with end-user requirements and, after delivery, new features
may have to be added for user support if the system is to meet
its goals.

30/10/2014 Chapter 4 Requirements Engineering 79

Changing requirements

• Large systems usually have a diverse user
community, with many users having different
requirements and priorities that may be
conflicting or contradictory.

– The final system requirements are inevitably a
compromise between them and, with experience,
it is often discovered that the balance of support
given to different users has to be changed.

30/10/2014 Chapter 4 Requirements Engineering 80

Requirements evolution

30/10/2014 Chapter 4 Requirements Engineering 81

Requirements management

• Requirements management is the process of managing changing
requirements during the requirements engineering process and
system development.

• New requirements emerge as a system is being
developed and after it has gone into use.

• You need to keep track of individual requirements
and maintain links between dependent
requirements so that you can assess the impact
of requirements changes. You need to establish a
formal process for making change proposals and
linking these to system requirements.

30/10/2014 Chapter 4 Requirements Engineering 82

Requirements management planning

• Establishes the level of requirements management detail that is
required.

• Requirements management decisions:
– Requirements identification Each requirement must be uniquely identified

so that it can be cross-referenced with other requirements.
– A change management process This is the set of activities that assess the

impact and cost of changes. I discuss this process in more detail in the
following section.

– Traceability policies These policies define the relationships between each
requirement and between the requirements and the system design that
should be recorded.

– Tool support Tools that may be used range from specialist requirements
management systems to spreadsheets and simple database systems.

30/10/2014 Chapter 4 Requirements Engineering 83

Requirements change management

• Deciding if a requirements change should be accepted
– Problem analysis and change specification

• During this stage, the problem or the change proposal is analyzed
to check that it is valid. This analysis is fed back to the change
requestor who may respond with a more specific requirements
change proposal, or decide to withdraw the request.

– Change analysis and costing
• The effect of the proposed change is assessed using traceability

information and general knowledge of the system requirements.
Once this analysis is completed, a decision is made whether or not
to proceed with the requirements change.

– Change implementation
• The requirements document and, where necessary, the system

design and implementation, are modified. Ideally, the document
should be organized so that changes can be easily implemented.

30/10/2014 Chapter 4 Requirements Engineering 84

Requirements change management

30/10/2014 Chapter 4 Requirements Engineering 85

Key points

• Requirements for a software system set out what the
system should do and define constraints on its
operation and implementation.

• Functional requirements are statements of the services
that the system must provide or are descriptions of
how some computations must be carried out.

• Non-functional requirements often constrain the
system being developed and the development process
being used.

• They often relate to the emergent properties of the
system and therefore apply to the system as a whole.

30/10/2014 Chapter 4 Requirements Engineering 86

Key points

• The requirements engineering process is an iterative
process that includes requirements elicitation,
specification and validation.

• Requirements elicitation is an iterative process that can
be represented as a spiral of activities – requirements
discovery, requirements classification and organization,
requirements negotiation and requirements
documentation.

• You can use a range of techniques for requirements
elicitation including interviews and ethnography. User
stories and scenarios may be used to facilitate
discussions.

30/10/2014 Chapter 4 Requirements Engineering 87

Key points

• Requirements specification is the process of
formally documenting the user and system
requirements and creating a software
requirements document.

• The software requirements document is an
agreed statement of the system requirements.
It should be organized so that both system
customers and software developers can use it.

30/10/2014 Chapter 4 Requirements Engineering 88

Key points

• Requirements validation is the process of
checking the requirements for validity,
consistency, completeness, realism and
verifiability.

• Business, organizational and technical changes
inevitably lead to changes to the requirements
for a software system. Requirements
management is the process of managing and
controlling these changes.

30/10/2014 Chapter 4 Requirements Engineering 89

